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A bad way

The dot product and cross product of two vectors are tools which are heavily used in physics.
As such, they are typically introduced at the beginning of first semester physics courses, just after
vector addition, subtraction, etc. Although they are not strictly required for these intro courses
(see [1], for example), they make the development and computations of work and energy, torque,
and electromagnetism far simpler.

Unfortunately, they are consistently introduced in an awful way: by stralght definition. That is,
using the dot product for example, for two vectors A = A T+ Ay y+A.2Z and B=B T+ Byy+ B2
they say something like

We define the dot product between A and B as:
A-B=A,B,+ A,B, + A.B.,

or,

A-B = |A||B|cosb,
where 6 is the angle between them.

Then, for the cross product, either they use an equation like the latter of the above two equations
coupled with the “right-hand rule,” or a strange algebraic combination of the components of A and
B, often “simplified” with help of a startling determinant.! See [2], [3], [4], [5] and [6] as a few
examples. Although a few of these give a geometric interpretation after the fact, it is usually in
passing, and does not really contribute to their discussion. These approaches are not limited to
textbooks, either. See [7] for an in-class lecture example.

In these examples, the dot product is introduced first and then the cross product. From one
standpoint this makes some sense — the dot product is definitionally simpler and usually easier to
calculate. However, from a conceptual standpoint, I think this order is backwards. Furthermore,
in my experience, students, by and large, miss the physical and graphical significance of these
definitions, and upon encountering the concepts of work or torque later on, take the resulting
expressions purely as definitions as well.? This is yet another example of the fact that definition #
explanation.

Personally, it is my inclination to wait to introduce these products until they’re needed, thus
motivating the discussion in the first place. However, I do understand the notion of “getting it
over with,” and, it’s possible that introducing them as abstract concepts lends to easier application
of the concepts to general problems. In any case, my discussion follows the latter approach (for
better insertion into standard texts) and presupposes understanding of vector basics: addition,
decomposition, etc..

LOf course, not all first semester physics students even know what a determinant is, but that is not my point.
*Work W = [ F' - d, and torque 7 = 7 X



A better way

The Cross Product
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(a) Geometrical view of the cross product as
the parallelogram area.
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(b) Graphical derivation of area for two 2D arbitrary vectors, from [§].

Figure 1: The 2D cross product of vectors A and B.

Say we have two vectors A and B with lengths A and B, and we want to find something which
is a measure of how much of B is perpendicular to A. Looking at Fig. 1(a), we can see that the
area of the parallelogram sided by the two vectors is such a measure. The area of a parallelogram

is
area = (base) x (height), (1)

which, for our case, is the same as

area = (length of one vector) x (amount of the other vector perpendicular to the first).  (2)

That is, you can only have an area if you have a “base” and a “height” perpendicular to the base.
Thus area is a good measure of perpendicularity.?

3 Another way to approach this is to start by calculating the area, and then explain that this can also be viewed



There are two different ways of calculating this area. If the angle between the two vectors is
0, as in Fig. 1(a), we see that, choosing A as the “base” we can write the “height” as Bsin#.
Alternatively, choosing B as the base, we write the perpendicular part as Asinf. Then the area is

area = (A) (Bsinf) = (B) (Asinb). (3)

However, if we don’t know angle between them, we’re not completely out of luck. If you look at
Fig. 1(b), you can see that for a simple, two-dimensional case, we can express the area in terms of
the x and y components of A and B:

area = A, By — B, A, (4a)
Of course, I could just have easily labeled the axes y and z which would give a different area
area’ = AyB, — ByA,, (4b)
or z and x, which would give yet another area
area’ = A,B, — B, A, (4c)

If all we’ve done is relabel our axes, keeping A and B fixed, then we wouldn’t expect the size of
these areas to be different — and they’re not. However, although the amount of area is the same, in
a way the areas are different in that they're facing different directions in each case. So, we need a
way to distinguish these three areas from each other, and from an arbitrarily oriented area. What
we’ll do is pick a vector perpendicular to both A to B — and thus perpendicular to the area of the
parallelogram — with magnitude equal to the area. We’ll call this vector

C = Ax B, (5)

and say it’s the result of a “cross product” of A and B. However, in principle, we have a choice
of two such perpendicular vectors. In Fig. 1, for example, we could choose the vector pointing in
either the +2z or —z direction. Additionally, this arbitrariness can be seen in choosing whether to
measure the angle in (3) from A to B or vise-versa.

So, as a matter of convention, we’ll decide to always measure angles from the first term in the
cross product (A in (5)) such that

TxXy=+2, (6)

so if the fingers in your right hand point along the little arcs we draw for angles, your thumb points
in the direction that this vector goes. Thus,

AxB=-BxA, (7)

since your hand would curl in the other direction. This is called the “Right-Hand Rule.” Then,
the areas we discussed in equations (4) become

areagy, = (A, By — By Ay)Z,
area,, = (AyB. — ByA.)i, (8b)

as a measure of perpendicularity.



and
areal, = (A, B, — B,A.)7, (8¢)

where the subscripts tell us which coordinate plane the two crossed vectors are in. Thus, the cross
product represents how much these two vectors point in perpendicular directions, and is
a signed area vector perpendicular to the plane described by A and B.
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(a) Geometrical view of the 3D cross product as the (b) Looking at the area from the xy-plane (dashed
parallelogram area. outline), the yz-plane (shaded) and the zz-plane

(solid).

Figure 2: The 3D cross product of vectors A and B and the decomposed area.

So far, though, we’ve only discussed vectors which have only two coplanar components. But it’s
fairly straightforward to generalize to arbitrary 3D vectors. See Fig. 2(a), for example. Here the
area vector, and hence the cross product vector, is pointing in a complicated direction. However,
we know we can decompose any vector into its x, y and z components, and this area vector is no
different:

A x B = areagp = (z area)? + (z area)i + (y area)j (9)

All we need to do is find out how much area is pointing in each direction. To do that, look at
Fig. 2(b). This picture shows what the area between the two vectors looks like if we look only at
two coplanar components at a time — in other words the z, x and y components of the area. But
we already know what each of these areas are from (8)! So, then we can combine these equations
and write the cross product

Ax B=(AyB. — ByA.)i + (A.B, — B.A,)j + (A B, — By A,)? (10)

The Dot Product

Having discussed the perpendicularity of two vectors, it’s natural to ask if there’s a similar
measure of the parallelity of two vectors. There are two ways of doing this. The way I’ll do it first
is explicitly geometrical, the second way is only implicitly geometrical.



(a) When B < A. (b) When B > A.

Figure 3: The projection of vector B on to vector A.

Say we have two vectors A and B again, and we want to know how much of B is pointing
(projected) along A. From Fig. 3 we see that this is equal to

Bcos#. (11)
Similarly, the amount of A that is projected along B is

Acosb. (12)

Now, it would be nice if we could have one statement which somehow combined the these two
statements and gave a measure both of how much of A s pointing along B and of how much
of B is pointing along /f; that is, a measure of how much these two vectors point in the
same direction. Additionally, since (2) used a multiplicative combination of the two vectors as a
measure of perpendicularity, we’ll try a similar multiplicative measure here, as well.

If we multiply (11) by A and (12) by B we can write a single, symmetric statement

D=A-B=ABcos, (13)

and say it’s the result of a “dot product” of A and B , which amounts to multiplying together the
parallel parts of two vectors. Here, too, if we don’t know the angle between them, we’re not out
of luck. For a vector written in component form, it’s straightforward to multiply the parallel parts
together:

A-B=A,B,+ A,B, + A.B.. (14)

However, unlike the cross product which gave us an actual area with a natural direction, this
area-like structure is actually a measure of “non-area” and doesn’t really have a natural direction.
Although we could, completely arbitrarily, define a direction for this dot product,* and thus make
it a vector as well, to the best of my knowledge such a quantity does not have any uses in physics,
so we'll leave it alone and treat it only as a number (scalar).

4i.e. along either A or 37 or along a line midway between them, or perpendicular to them, or some other arbitrary
choice



Alternatively, we know that the largest area possible between two vectors occurs when they
are perpendicular to each other, where the area is AB (you can also see this from (3)). If we are
interested in the maximal “amount perpendicular” we can write

(amount perpendicular)?,, = (AB)?, (15)

max

where they are squared to take care of sign problems. Now, when they are completely parallel there
is no area, and we’re left only with non-area, which, also, can’t be larger than the total maximum
area, so

(amount parallel)?, = (AB)?, (16)

max

as well.
Then using a rough analogue to the Pythagorean theorem we see that

amount parallel)? + (amount perpendicular)? = (max total amount)?

amount parallel)?

= (max total amount)? — (amount perpendicular)?
= (AB)? — (ABsin6)?

2 = (AB)? [1- sin? 6]

2= (AB)%*cos® 6

(amount parallel) = £ AB cos 6,

2

( )
( )
(amount parallel)
(amount parallel)
( )

amount parallel

which, choosing the positive root, is the same as (13).
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